
6    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

SECURITYExploring Controller Area Networks
I A N F O S T E R A N D K A R L K O S C H E R

Ian Foster recently completed
his master’s degree at the
University of California, San
Diego, where he worked on
analyzing the security of

aftermarket telematics dongles. In doing so he
found that security of some of these devices
was often an afterthought, if existent at all.
idfoster@cs.ucsd.edu

Karl Koscher is a postdoctoral
researcher at the University of
California, San Diego, where
he specializes in embedded
systems security. He earned

his PhD in 2014 from the University of
Washington, working with Tadayoshi Kohno.
As part of his dissertation work, he was one
of the lead researchers to perform the first
published, comprehensive, experimentally
backed security analysis of a modern
automobile. supersat@cs.ucsd.edu

The highly publicized attack by Miller and Valasek during the summer
of 2015 once again drew attention to weaknesses in automobile secu-
rity. All modern automobiles rely on a broadcast network called CAN,

and interfaces into that network are actually required by law. In this article,
we explain how the CAN bus works and how it can be exploited.

Background
The Controller Area Network (CAN) is a serial bus standard designed for reliable, real-time
message delivery between distributed control systems. Originally intended for vehicle appli-
cations, the CAN bus standard has found its way into many types of control systems, such
as those used in elevators, medical devices, and robots. As detailed below, the standard is
commonly implemented as a shared, differentially signaled bus, and enables priority-based
arbitration. Multiple bitrates are supported, up to one megabit per second.

In automotive contexts, CAN buses are now commonly used to connect the various com-
puters (known in the industry as electronic control units, or ECUs) of a car together. These
ECUs now control most aspects of modern automobiles, including the engine, transmission,
brakes, airbags, lights, and locks. Additional systems, such as “infotainment” (e.g., radio/nav-
igation systems) and telematics systems (e.g., OnStar), are often connected to these ECUs.
Vehicles will often have multiple CAN buses connecting various subsets of ECUs together.

The Controller Area Network Standard
Bosch, a German manufacturer of automotive control systems, began work on the Controller
Area Network standard in 1983. Intel and Mercedes-Benz became involved with the project
shortly thereafter, and in 1986 a paper introducing the “Automotive Serial Controller Area
Network” standard was presented at the annual International Congress of the Society of
Automotive Engineers (SAE) [1]. Version 2 was released in 1991 and forms the basis of all
modern CAN implementations. CAN was subsequently adopted as an ISO standard (11898)
in 1993 [2].

The CAN standard is optimized for low latency, high throughput, and reliable transmission.
Low latency is achieved through short frame sizes (with a maximum payload length of eight
bytes) and a priority-based, carrier sense multiple access (CSMA) arbitration scheme. While
the maximum bitrate of 1 Mbps may seem low by today’s standards, it meets the needs of
most control systems. A new, backwards-compatible extension called CAN FD supports
higher data rates. Reliability is ensured through multiple mechanisms. Differential signal-
ing is commonly used at the physical layer, which provides immunity to common-mode noise
(i.e., interference that couples onto one line will couple on to the other as well, canceling
out its effect), as well as potential redundancy if one of the lines should fail. A 15-bit CRC
(cyclic redundancy check) field at the end of each frame provides a high amount of certainty
that frames are received correctly and are uncorrupted. An ACK slot at the end of the frame
allows the sender to ensure that the frame was received correctly by at least one node, and
many CAN controllers will automatically retransmit unacknowledged CAN frames. Figure 1
shows the CAN frame format.

mailto:idfoster@cs.ucsd.edu
mailto:supersat@cs.ucsd.edu
http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  7

SECURITY
Exploring Controller Area Networks

Figure 1: The CAN frame format

The CAN standard allows some flexibility in the physical layer
(and in fact is not specified in Bosch’s original standards), but
relies on there being a “dominant” logical zero state and a “reces-
sive” logical one state. Most CAN applications implement the
physical layer described in ISO 11898-2, which specifies two
lines, CAN_H and CAN_L, which are connected to each other
at both ends of the bus with a 120Ω terminating resistor. In the
recessive state, CAN_H and CAN_L are at approximately the
same voltage (nominally 2.5v to ground). In the dominant state,
CAN_H is pulled to 5v, while CAN_L is pulled to ground.

CAN frames primarily consist of an 11-bit or 29-bit arbitration
ID, a four-bit length field, up to eight bytes of payload, a 15-bit
CRC, and an acknowledgment bit. The arbitration ID typically
is treated as a message type, but is sometimes (such as with
OBD-II diagnostics, described below) used as a controller source
or destination identifier. When transmitting the arbitration ID,
the CAN transceiver monitors the bus. If it sends a recessive
bit but detects a dominant bus condition, it aborts the message
transmission. Note that the frame from the node that asserted
the dominant bus condition has not been corrupted and thus can
continue to be sent. Since a dominant state indicates a logical
zero, and data is transmitted most-significant-bit first, lower
arbitration IDs take precedence over higher arbitration IDs.

At this point, the astute reader may notice some security issues
with the CAN protocol as described. In particular, CAN buses
are broadcast networks, typically don’t provide a way to identify
the sender or recipient of a message, and are subject to trivial
denial-of-service attacks. Each node on a CAN bus can observe
all traffic. In fact, aspects of the CAN protocol, such as arbitra-
tion, require this. Furthermore, each node can send arbitrary
CAN frames, without other nodes being able to verify the sender.
Source or destination IDs, if used, can be trivially spoofed. Con-
stantly asserting a dominant bus state will cause all other nodes
to back off indefinitely, although well-designed CAN transceiv-
ers will detect this and enter a receive-only mode, making this
type of denial-of-service attack difficult to pull off in software
alone.

Given that the CAN standard provides no protection against
malicious behavior, an attacker with access to a CAN bus is
often able to take control of many critical aspects of the attached
control systems. In the case of modern automobiles, there are
many potential entry points into a vehicle’s CAN bus(es), and
these buses expose almost complete control over every aspect of
the car’s operation.

CAN Buses in Vehicles
Since CAN was invented with automotive applications in mind,
we should step back and explain why vehicle ECUs may want
to communicate with each other. Early engine control systems
were introduced to meet stringent new emissions limits. In
particular, by monitoring multiple sensors, the air/fuel ratio
could be tightly controlled to minimize emissions. Since then,
ECUs have evolved and proliferated to support ever-increasing
fuel efficiency, emissions, safety, and reliability standards, and
there can be further synergies with cross-ECU communications.
For example, as Bosch explained in their original CAN bus paper,
a transmission control unit can request the engine control unit
to reduce torque, which reduces wear on the clutch and provides
smoother shifting [1]. Similarly, the airbag controller can ask the
engine controller to shut off the fuel pump if the airbags deploy,
minimizing the chance of a fuel leak after an accident. Faced
with a growing amount of inter-ECU communication, moving to
a shared communications bus reduced the number of expensive
(and heavy) point-to-point links.

Today, most aspects of a vehicle’s operation go over one or more
CAN buses. For example, in one vehicle we looked at [3], the anti-
lock braking/stability control system reports the vehicle’s speed
to other modules, such as the speedometer, as well as to the
engine controller (as input to its cruise-control algorithms). The
radio also receives these speed messages to dynamically adjust
its volume. In fact, the familiar click-clacks of the turn signal
relays are now simulated by the radio, which receives the turn
signal status from the body controller. The telematics system
routes its audio through the radio, and can command the HVAC
system to turn down the fans when a call is received.

These are just a few examples of inter-ECU communication
in today’s modern vehicles. In fact, the amount of information
being transferred has grown to a point where vehicles often have
multiple CAN buses, with gateway nodes that route selected
messages between these buses. The architecture of how ECUs
are connected together varies a great deal by manufacturer, but
in 2014 Miller and Valasek published a survey of CAN bus archi-
tectures across a wide range of OEMs [4].

8    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

SECURITY
Exploring Controller Area Networks

Figure 2: OBD-II VIN query frame—only the ID field and eight-byte data
field of the CAN frame are shown.

The ID or priority of the example CAN frame shown in Figure
2 is 0x7E0. CAN identifiers for legislated OBD are defined by
ISO 16765-4 [7], which specifies that ECUs can be physically
addressed with IDs 0x7E0–0x7E7, with corresponding replies
sent to 0x7E8–0x7EF. The frame type and length are both nib-
bles. The type is 0x0 to indicate a “single frame,” which means
that the entire OBD request can fit within a single CAN frame.
The LEN field specifies how many more bytes follow in the
request. SID is the service identifier, which in this case is 0x09,
or the “Request Vehicle Data” service. The “Request Vehicle
Data” service takes a parameter ID (PID). For this service, a PID
of 0x02 corresponds to the VIN.

Figure 3: OBD-II initial VIN response frame

The response to the query frame is shown in Figure 3. The ID
and PID code fields should be the same as the query frame. As
with the request, if the response can fit within a single frame,
the type is 0. However, in this case, the response is split across
many frames, so a frame type of 1 is used to indicate the “start
frame” of a multi-frame packet. The LEN field of a start frame
indicates the total number of bytes in the response. In an OBD
response, the SID field is equal to 0x40 plus the SID from the
query. For service 0x09, NO is the number of data items (in this
case 1 for the VIN). Data contains the first three bytes of the
requested data.

Figure 4: ISO 15765-2 OBD-II flow control frame sent to main ECU

In order to get the remaining 17 bytes, a flow control frame needs
to be sent to the ECU informing it of the parameters for send-
ing consecutive frames. Figure 4 shows a flow control frame
that will instruct the ECU to send all of the remaining packets
immediately. The ID is the same as the OBD query. A status of
0x30 requests the rest of the data to be sent now and a status of
0x31 requests the ECU to wait. BS is the block size, defining the
number of frames to send before waiting for next flow control
frame (0 means no further flow control frames are needed). ST is
the separation time delay between frames in milliseconds.

On-Board Diagnostics
In 1996, the OBD-II (On-Board Diagnostics) connector became
federally mandated by the US Government. The OBD-II con-
nector provides a way to verify the status of emissions control
systems and facilities emissions testing. For example, emissions
control systems can indicate over OBD-II port whether any sen-
sor faults have been detected, the overall confidence in sensor
performance, whether any unapproved firmware modifications
have been made (which may affect emissions), as well as current
sensor readings, which can be validated against external testing
equipment. At the time, while the physical connector was stan-
dardized, there were several OBD-II communication protocols
used by different manufacturers. The widespread adoption of
CAN for powertrain ECU communications led it to be the natu-
ral choice for a single OBD standard. Since 2008, all vehicles sold
in the US are required to provide OBD functionality over CAN.
Practically speaking, this means that one or more major CAN
buses are typically exposed to the OBD-II port.

The legally-required implementation of OBD over CAN (“legis-
lated OBD”) is defined by ISO 15031 and ISO 15765 and provides
a relatively limited set of services, such as reading certain pow-
ertrain parameters such as engine speed, retrieving and clearing
trouble codes, retrieving historical parameters recorded when a
trouble code was raised, and requesting sensor test data. Under
these standards, diagnostic messages are directed to ECUs at
fixed CAN IDs, with their responses coming back with other fixed
CAN IDs. ISO 15765-2 defines a simple transport layer, known as
ISO-TP, which can be used to assemble larger diagnostic messages
across multiple CAN frames and ensures in-order delivery [5].

In addition to legislated OBD, many vehicles also support the
newer Unified Diagnostic Services (UDS) standard, defined
by ISO 14229-3, which builds on legislated OBD. UDS provides
several additional services, such as the ability to read and write
arbitrary memory locations in ECUs, reflash ECU firmware, and
override ECU I/O. For sensitive operations, such as reflashing
safety, theft, or emissions-critical ECUs, or performing poten-
tially unsafe I/O overrides, an OEM-defined unlocking pro-
cess must usually be performed with the UDS SecurityAccess
service, which defines a challenge/response-type mechanism
for authentication. However, these unlocking schemes are often
not robust—some OEMs use small keys that can be brute-forced,
while others use simple algorithms such as XORing the chal-
lenge with a known secret [3, 6].

OBD-II Example
In the following example we show how to request the vehicle’s VIN
from the engine control module using OBD over CAN. OBD query
and response packets are sent over the CAN bus using ISO-TP
standard [5]. In this example, all nibbles and bytes shown are part
of the CAN frame’s eight-byte data section except for the ID field.

http://www.usenix.org

www.usenix.org	   D ECE M B ER 20 1 5  VO L . 4 0, N O. 6  9

SECURITY
Exploring Controller Area Networks

Figure 5: Remaining OBD-II VIN response frames

Figure 5 shows the remaining data frames sent by the ECU after
receiving the flow control frame. The ID is the same as the initial
response frame. Type and Index are both nibbles. The type is 0x2
to indicate consecutive frames, and the index is a frame counter
starting at 1. Data contains up to seven bytes of the response
data per consecutive frame. In this example, VIN is represented
as a 20-byte string that is divided up into an initial frame and
three consecutive frames.

This example uses a well-known query to request the VIN from
the main ECU. However, for every ECU on the bus there are
many other packets that are not well-documented. The more
interesting CAN frames that can affect things like the engine,
brakes, locks, etc. are proprietary and are generally not shared by
the manufacturer.

Most of what is publicly known about the non-standard CAN
frames has been reverse-engineered. Each vehicle may have dif-
ferent CAN messages, and sometimes even different generations
of the same vehicle will use different frames. For example, the
CAN frame to unlock the trunk on one vehicle may activate the
windshield wipers of another vehicle.

Exploiting Vehicular Controller Area Networks
We now turn our attention towards how these automotive CAN
buses can be abused. An attacker may be able to get access to
these CAN buses in a variety of ways. Since these buses are often
exposed over the ODB-II port, aftermarket devices that plug into
this port (such as dongles that track your driving for insurance
purposes) are potential entry points. At WOOT ’15 we demon-
strated several attacks against a popular OBD-II dongle platform
that gives an attacker complete access to at least one CAN bus
[8]. These dongles connect cars to the cellular network and can
be exploited via SMS or their built-in Web server. Prior work by
researchers at UC San Diego and the University of Washington,
as well as Miller and Valasek, have also demonstrated multiple
remotely exploitable vulnerabilities in unmodified vehicles, which
can also be used to gain complete access to CAN buses [9, 10].
With vehicles becoming increasingly connected to the outside
world, the number of potentially vulnerable entry points to these
vehicles’ CAN buses is rapidly growing.

With access to the CAN buses, an attacker can either use stan-
dard inter-ECU messages to influence vehicle behavior or may
be able to exploit diagnostic services. For example, Miller and

Valasek demonstrated partial control of the steering wheel by
spoofing parking-assist and lane-keep-assist messages. These
messages are relatively easy to discover—since the CAN bus is
a broadcast network, we can simply monitor the messages sent
while eliciting a behavior we want to reproduce. These messages
can be captured using a CAN frame logger connected to the
ODB-II port, and we can verify that we’ve found the correct mes-
sage by replaying it and seeing if it produces the desired effect.

Given the relatively fragile nature of CAN, an attacker can over-
ride messages as well. For example, the UW/UCSD researchers
were able to falsify speedometer readings—and in fact, invert
them such that the displayed speed was 100 MPH minus the
actual speed—simply by flooding the bus with spoofed messages
[3]. A slightly more sophisticated attack could detect speedome-
ter messages sent by other ECUs and assert a dominant bus state
during the CRC, causing all other receivers to reject the message
as invalid, although this requires fairly precise timing.

Some “functionality” is not exposed by standard inter-ECU mes-
sages. For example, there is no message that will let another ECU
completely disable the brakes, and especially not for an extended
period of time. In these instances, diagnostic services can often
be abused to achieve the desired effect.

One powerful diagnostic service is the ability to override device
I/O. While the exact payload of these message varies by OEM
and ECU, the UW/UCSD team found it extremely easy to enu-
merate virtually every possible behavior by just sending random
payloads. Combined with elevated privileges obtained by exploit-
ing weak SecurityAccess schemes, an attacker can potentially
perform dangerous operations, such as taking direct control of
the brakes while the vehicle is moving at high speed.

Another useful diagnostic service is ReadMemoryByAddress,
which can enable an attacker to read arbitrary pieces of an
ECU’s address space. This service can often be used to dump an
ECU’s firmware for reverse-engineering or to leak sensitive val-
ues such as authentication keys. While suppliers are cautioned
to prevent leaking sensitive data over this service, many do not
heed this warning. Others may not implement ReadMemory-
ByAddress restrictions correctly. For example, an ECU may
prevent you from reading out sensitive values from flash, but
does not prevent you from reading the same values out when they
are copied to RAM.

Finally, the RequestDownload/TransferData services can be
used to reflash ECUs, which allows an attacker to implement
arbitrary behavior. These services should normally be restricted,
but in many cases they aren’t, and in other cases the SecurityAc-
cess mechanism protecting access can often be defeated.

10    D ECE M B ER 20 1 5  VO L . 4 0, N O. 6 	 www.usenix.org

SECURITY
Exploring Controller Area Networks

Summary
Modern automobiles have dozens of control units that commu-
nicate with each other via CAN buses. CAN buses are a shared
broadcast medium, and while they are designed for reliability,
they aren’t designed to withstand malicious attacks. Many criti-
cal aspects of a vehicle’s operation can be controlled with access
to these buses, either by spoofing ordinary inter-ECU messages
or by abusing diagnostic services. These CAN buses are becom-
ing increasingly vulnerable to attack. Aftermarket devices

plugged into the ODB-II port are in a position of privileged
access and may be vulnerable to wireless attacks. Furthermore,
vehicles themselves are now incorporating wireless connectiv-
ity (e.g., Bluetooth, WiFi, and cellular) in their infotainment
and telematics systems, further broadening the potential attack
surface. However, with recent media attention on these types of
vulnerabilities, we are hopeful that automakers and aftermarket
device manufacturers will devote more resources to securing
their products.

References
[1] U. Kiencke, S. Dais, and M. Litschel, “Automotive Serial
Controller Area Network,” SAE Technical Paper 860391, 1986:
doi:10.4271/860391.

[2] International Organization for Standardization, “Road
Vehicles— Interchange of Digital Information—Controller Area
Network (CAN) for High-Speed Communication,” ISO/DIS
Standard 11898:1993.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S.
Savage, “Experimental Security Analysis of a Modern Automo-
bile,” in the Proceedings of the 31st IEEE Symposium on Security
and Privacy, May 16–19, 2010, Oakland, CA.

[4] C. Miller and C. Valasek, “A Survey of Remote Automotive
Attack Surfaces,” Black Hat USA 2014, August 2014, Las
Vegas, NV.

[5] International Organization for Standardization, “Road Vehi-
cles—Diagnostics on Controller Area Networks (CAN)—Part 2:
Network Layer Services,” ISO Standard 15765-2:2004.

[6] C. Miller and C. Valasek, “Adventures in Automotive
Networks and Control Units,” DEF CON 21, July 2013, Las
Vegas, NV.

[7] International Organization for Standardization, “Road
Vehicles—Diagnostics on Controller Area Networks (CAN)—
Requirements for Emissions-Related Systems,” ISO Standard
15765-4:2005(E).

[8] I. Foster, A. Prudhomme, K. Koscher, S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” in the Proceedings
of the 9th USENIX Workshop on Offensive Technologies
(WOOT ’15), August 2015, Washington, DC.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Sha-
cham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in the Proceedings of the 20th USENIX Security
Symposium, August 2011, San Francisco, CA.

[10] C. Miller and C. Valasek, “Remote Exploitation of an
Unaltered Passenger Vehicle,” Black Hat USA 2015, August
2015, Las Vegas, NV.

http://www.usenix.org

It’s time for the security community to take a step back and get a fresh perspective on threat assessment

and attacks. This is why the USENIX Association is excited to announce the launch of Enigma,

a new security conference geared towards those working in both industry and research.

Enigma will deliver three days of talks from leading practitioners and researchers, all of whom

are uniquely qualifi ed to discuss security as it relates to the Internet of Things, black markets,

election issues, threats, scalability, and much more.

JANUARY 25–27, 2016
SA N FR A NCISCO, C A LIF OR NI A , USA

enigma.usenix.org

Featured speakers include:

Bryan Payne, Netfl ix:
“PKI at Scale Using

Short-Lived Certifi cates”

Adrienne Porter Felt, Google:
“Why Is Usable Security Hard,

and What Should We Do about It?”

Damon McCoy,
New York University:

“Bullet-Proof Credit Card
Processing”

The full program and registration are now available.

